32 research outputs found

    Generalized Approximate Message-Passing Decoder for Universal Sparse Superposition Codes

    Get PDF
    Sparse superposition (SS) codes were originally proposed as a capacity-achieving communication scheme over the additive white Gaussian noise channel (AWGNC) [1]. Very recently, it was discovered that these codes are universal, in the sense that they achieve capacity over any memoryless channel under generalized approximate message-passing (GAMP) decoding [2], although this decoder has never been stated for SS codes. In this contribution we introduce the GAMP decoder for SS codes, we confirm empirically the universality of this communication scheme through its study on various channels and we provide the main analysis tools: state evolution and potential. We also compare the performance of GAMP with the Bayes-optimal MMSE decoder. We empirically illustrate that despite the presence of a phase transition preventing GAMP to reach the optimal performance, spatial coupling allows to boost the performance that eventually tends to capacity in a proper limit. We also prove that, in contrast with the AWGNC case, SS codes for binary input channels have a vanishing error floor in the limit of large codewords. Moreover, the performance of Hadamard-based encoders is assessed for practical implementations

    Mutual Information and Optimality of Approximate Message-Passing in Random Linear Estimation

    Full text link
    We consider the estimation of a signal from the knowledge of its noisy linear random Gaussian projections. A few examples where this problem is relevant are compressed sensing, sparse superposition codes, and code division multiple access. There has been a number of works considering the mutual information for this problem using the replica method from statistical physics. Here we put these considerations on a firm rigorous basis. First, we show, using a Guerra-Toninelli type interpolation, that the replica formula yields an upper bound to the exact mutual information. Secondly, for many relevant practical cases, we present a converse lower bound via a method that uses spatial coupling, state evolution analysis and the I-MMSE theorem. This yields a single letter formula for the mutual information and the minimal-mean-square error for random Gaussian linear estimation of all discrete bounded signals. In addition, we prove that the low complexity approximate message-passing algorithm is optimal outside of the so-called hard phase, in the sense that it asymptotically reaches the minimal-mean-square error. In this work spatial coupling is used primarily as a proof technique. However our results also prove two important features of spatially coupled noisy linear random Gaussian estimation. First there is no algorithmically hard phase. This means that for such systems approximate message-passing always reaches the minimal-mean-square error. Secondly, in a proper limit the mutual information associated to such systems is the same as the one of uncoupled linear random Gaussian estimation

    Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula

    Full text link
    Factorizing low-rank matrices has many applications in machine learning and statistics. For probabilistic models in the Bayes optimal setting, a general expression for the mutual information has been proposed using heuristic statistical physics computations, and proven in few specific cases. Here, we show how to rigorously prove the conjectured formula for the symmetric rank-one case. This allows to express the minimal mean-square-error and to characterize the detectability phase transitions in a large set of estimation problems ranging from community detection to sparse PCA. We also show that for a large set of parameters, an iterative algorithm called approximate message-passing is Bayes optimal. There exists, however, a gap between what currently known polynomial algorithms can do and what is expected information theoretically. Additionally, the proof technique has an interest of its own and exploits three essential ingredients: the interpolation method introduced in statistical physics by Guerra, the analysis of the approximate message-passing algorithm and the theory of spatial coupling and threshold saturation in coding. Our approach is generic and applicable to other open problems in statistical estimation where heuristic statistical physics predictions are available

    High-Dimensional Inference on Dense Graphs with Applications to Coding Theory and Machine Learning

    Get PDF
    We are living in the era of "Big Data", an era characterized by a voluminous amount of available data. Such amount is mainly due to the continuing advances in the computational capabilities for capturing, storing, transmitting and processing data. However, it is not always the volume of data that matters, but rather the "relevant" information that resides in it. Exactly 70 years ago, Claude Shannon, the father of information theory, was able to quantify the amount of information in a communication scenario based on a probabilistic model of the data. It turns out that Shannon's theory can be adapted to various probability-based information processing fields, ranging from coding theory to machine learning. The computation of some information theoretic quantities, such as the mutual information, can help in setting fundamental limits and devising more efficient algorithms for many inference problems. This thesis deals with two different, yet intimately related, inference problems in the fields of coding theory and machine learning. We use Bayesian probabilistic formulations for both problems, and we analyse them in the asymptotic high-dimensional regime. The goal of our analysis is to assess the algorithmic performance on the first hand and to predict the Bayes-optimal performance on the second hand, using an information theoretic approach. To this end, we employ powerful analytical tools from statistical physics. The first problem is a recent forward-error-correction code called sparse superposition code. We consider the extension of such code to a large class of noisy channels by exploiting the similarity with the compressed sensing paradigm. Moreover, we show the amenability of sparse superposition codes to perform joint distribution matching and channel coding. In the second problem, we study symmetric rank-one matrix factorization, a prominent model in machine learning and statistics with many applications ranging from community detection to sparse principal component analysis. We provide an explicit expression for the normalized mutual information and the minimum mean-square error of this model in the asymptotic limit. This allows us to prove the optimality of a certain iterative algorithm on a large set of parameters. A common feature of the two problems stems from the fact that both of them are represented on dense graphical models. Hence, similar message-passing algorithms and analysis tools can be adopted. Furthermore, spatial coupling, a new technique introduced in the context of low-density parity-check (LDPC) codes, can be applied to both problems. Spatial coupling is used in this thesis as a "construction technique" to boost the algorithmic performance and as a "proof technique" to compute some information theoretic quantities. Moreover, both of our problems retain close connections with spin glass models studied in statistical mechanics of disordered systems. This allows us to use sophisticated techniques developed in statistical physics. In this thesis, we use the potential function predicted by the replica method in order to prove the threshold saturation phenomenon associated with spatially coupled models. Moreover, one of the main contributions of this thesis is proving that the predictions given by the "heuristic" replica method are exact. Hence, our results could be of great interest for the statistical physics community as well, as they help to set a rigorous mathematical foundation of the replica predictions

    Perbedaan Kadar Kreatinin Serum Pada Pasien Preeklamsia Berat Early dan Late Onset RSUP Dr. M. Djamil Padang tahun 2021

    Get PDF
    Latar Belakang: Preeklamsia merupakan salah satu faktor risiko penyebab tingginya angka kematian saat masa kehamilan dan nifas. Preeklamsia akan menyebabkan kerusakan banyak organ, salah satunya organ ginjal. Salah satu pemeriksaan yang dilakukan untuk mengevaluasi fungsi ginjal adalah pemeriksaan kreatinin. Objektif: Penelitian ini bertujuan untuk membandingkan rata-rata kadar kreatinin serum antara pasien dengan preeklamsia berat early onset danlate onset di RSUP DR. M. Djamil Padang. Metode: Penelitian ini adalah penelitian analitik observasional dengan menggunakan pendekatan cross sectional. Penelitian ini dilakukan di rekam medis RSUP Dr. M. Djamil Padang pada bulan Juni 2022 – Juli 2022 dengan jumlah sampel sebanyak 36 pasien preeklamsia berat early onset dan 36 pasien preeklamsia berat late onset. Hasil: Hasil analisis bivariat memperlihatkan perbedaan yang signifikan antara kreatinin serum preeklamsia berat early onset dan late onsetdengan uji Mann-Whitney (0,8; 0,7, p=0.023). Kreatinin serum dan indeks massa tubuh ditemukan berkorelasi secara signifikan dengan uji sperman (r=-,0325, p=0.005) dan tidak ditemukan korelasi yang signifikan antara kreatinin serum dengan usia (r= -0,062, p=0.060), tekanan darah sistolik (r=0,152, p=0.020), dan diastolik (r=0,061, p=0.060). Kesimpulan: preeklamsia berat early onset memiliki rata-rata kreatinin serum yang lebih tinggi daripada preeklamsia berat late onset, dan adanya korelasi yang signifikan antara kreatinin serum dan indeks massa tubuh. Kata kunci:  Preeklamsia berat, kreatinin serum, usia, tekanan darah, indeks massa tubu
    corecore